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The rich phenomenology of crossings and anticrossings of energies and widths, ob-
served in an isolated doublet of resonances when one control parameter is varied, is
fully explained in terms of the topological properties of the energy hypersurfaces close
to the degeneracy point. The hypersurface representing the complex resonance eigen-
values, as functions of the control parameters, has an algebraic branch point of rank
one, and branch cuts in its real and imaginary parts, in parameter space. Associated with
this singularity in parameter space, the scattering matrix, S�(E), and the Green’s func-
tion, G

(+)
� (k; r, r ′), have one double pole in the unphysical sheet of the complex energy

plane. We characterize the universal unfolding or deformation of any degeneracy point
of two unbound states in parameter space by means of a universal 2-parameter family
of functions which is contact equivalent to the pole position function of the isolated
doublet of resonances at the exceptional point and includes all small perturbations of
the degeneracy condition up to contact equivalence.

KEY WORDS: multiple resonances degeneracies; non-relativistic scattering theory
phases: topological; Berry phase

1. INTRODUCTION

Two level mixing of coherent energy eigenstates of a quantum system is a
well known and important phenomenon (Cohen-Tannoudji et al., 1973; Feynmann
et al., 1970; Landau and Lifshitz, 1974). In this paper, we will be concerned with
the mixing and degeneracy of the two energy eigenstates in an isolated doublet of
unbound states of a quantum system depending on two control parameters.

In the case of bound states of a Hermitian Hamiltonian depending on param-
eters, the energy eigenvalues are real and the two level mixing leads to the familiar
phenomenon of energy level repulsion and avoided level crossings when a single
parameter is varied. J. von Neumann and E. P. Wigner, in their celebrated theorem
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(von Neumann and Wigner, 1929), explained that, in the absence of symmetry,
true crossing or degeneracy requires the variation of a number of parameters equal
to the codimension of the degeneracy which, in the general case, is three. Later, E.
Teller (1937), showed that “if the parameters are X, Y and Z, the two degenerating
levels correspond to the two sheets of an elliptic double cone in the (X, Y,Z,E)
space, near the degeneracy,” this constitutes the diabolic crossing scenario (Berry,
1985), of the levels E±. For a recent review on diabolical conical intersections, see
D. R. Yarkoni (1996).

In the case of unbound states, the energy eigenvalues are complex, this fact
opens a rich variety of possibilities, namely, crossings or anticrossings of energies
and widths.

In particular, a joint crossing of energies and widths produces a true degener-
acy of resonance energy eigenvalues in a physical system depending on only two
real parameters (Mondragón and Hernández, 1993).

Recently, a great deal of attention has been given to the rich scenario of
crossings and anticrossings of energies and widths of resonance energy eigenvalues
in the case of unbound states of a quantum system. Novel effects have been found
which attracted considerable theoretical (Kylstra and Joachain, 1998; Friedrich and
Wintgen, 1985; Hernández and Mondragón, 1994) and recently, also experimental
interest (von Brentano, 1990, 1996).

The crossing and anticrossing of energies (frequencies) and widths of two
interacting resonances in a microwave cavity were carefully measured by P. von
Brentano, who also discussed the generalization of the von Neumann Wigner
theorem from bound to unbound states (von Brentano and Philipp, 1999; Philipp
et al., 2000; von Brentano, 2002). The problem of the characterization of the
singularities of the energy surfaces at a degeneracy of resonances arises naturally
in connection with the topological phase of unbound states which was predicted by
Hernández, Jáuregui, and Mondragón (1992); Mondragón and Hernández (1996,
1998), and, later and independently, by W. D. Heiss (1999), and which was recently
measured by the Darmstadt group (Dembowski et al., 2001, 2003).

A number of examples of double poles in the scattering matrix of simple
quantum mechanical systems have been recently described. The formation of
resonance double poles of the scattering matrix in a two channel model with square
well potentials was described by Vanroose et al. (1997). Hernández et al. (2000)
investigated a one channel model with a double δ−barrier potential and showed
that a double pole of the S-matrix can be induced by tuning the parameters of
the model. Generalizations of the double barrier potential model to the case of
finite width barriers were proposed and discussed by W. Vanroose (2001) and
Hernández et al. (2003a).

Korsch and Mossman (2003) made a detailed investigation of degeneracies of
resonances in a symmetric double δ−well in a constat Stark field. Keck et al. (2003)
extended and generalized the discussion of the Berry phase of resonance states,
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from the case of unbound states of a hermitian Hamiltonian given in Hernández
et al. (1992); Mondragón and Hernández (1996, 1998), to the case of unbound
states of non-hermitian Hamiltonians.

The general theory of Gamow or resonant eigenfunctions associated with
multiple poles of the scattering matrix and Jordan blocks in the complex energy
representation of the resolvent operator was developed by I. Antoniou (1998), A.
Bohm (1997) and Hernández et al. (2003b).

In this paper, we will discuss the mixing and degeneracy of an isolated doublet
of unbound states in the framework of the theory of the analytical properties of the
radial wave functions. A generalization of the von Neumann-Wigner theorem and
the Teller geometric construction from bound to unbound states will also be given.

The outline of our paper is as follows: the pole position function is introduced
and its analytical properties are discussed in terms of a simple and explicit but very
accurate contact equivalent approximant in Section 2. The universal unfolding of
the Jost function at the degeneracy of resonances and a family of functions which
is a universal unfolding of the degeneracy and is also contact equivalent to the
exact resonance energy eigenvalues are given in Section 3. Section 4 is devoted to a
discussion of crossings and anticrossings of energies and widths of the resonances
in the mixings of an isolated doublet of unbound states. The trajectories of the
S-matrix poles in the complex energy plane are derived and the changes of identity
of the resonant poles in the vicinity of a crossing of unbound states are discussed
in Section 5. We end our paper in Section 6 with a summary of results and some
conclusions.

2. BRANCH POINTS AND BRANCH CUTS OF DEGENERATE ENERGY
EIGENVALUES IN PARAMETER SPACE

In this section we will consider the resonance energy eigenvalues of a radial
Schrödinger Hamiltonian, H (�)

r , with a potential V (r; x1, x2) which is a short
range function of the radial distance, r , and depends on at least two external
control parameters (x1, x2). The resonance energy eigenvalues are branches of
a multivalued function of the external parameters (Newton, 1982). When the
potential V (r; x1, x2) is short ranged and has two regions of trapping, the physical
system may have isolated doublets of resonances which may become degenerate
for some special values of the control parameters. For example, a double square
barrier potential has isolated doublets of resonances which may become degenerate
for some special values of the heights and widths of the barriers (Hernández et al.,
2000; Vanroose, 2001; Hernández et al., 2003a). In this case, the corresponding two
energy eigenvalues, say En(x1, x2) and En+1(x1, x2), are equal (cross or coincide)
for those special values of the control parameters.

It will be shown that, when the physical system has an isolated doublet of
resonances which become degenerate for some exceptional values of the external
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parameters, (x∗
1 , x∗

2 ), the energy hypersurfaces representing the complex resonance
energy eigenvalues as functions of the control parameters have an algebraic branch
point of square root type (rank one) in parameter space. The analytical structure of
the singularity of the energy eigenvalues as functions of the real control parameters
will be worked out and discussed in detail.

The regular and physical solutions of the radial Schrödinger equation with
the Hamiltonian H (�)

r (x1, x2) are functions of the radial distance r , the wave
number k and the control parameters (x1, x2). When necessary, we will stress this
last functional dependence by adding the control parameters (x1, x2) to the other
arguments after a semicolon.

The energy eigenvalues En of the Hamiltonian H (�)
r are obtained from the

zeroes of the Jost function, f (−k; x1, x2),

En = h2

2m
k2
n, (1)

where kn is such that

f (−kn; x1, x2) = 0. (2)

When kn lies in the fourth quadrant of the complex k-plane,

Re kn > 0 and Im kn < 0, (3)

the corresponding energy eigenvalueEn, is a complex resonance energy eigenvalue.
The condition (2) defines, implicitly, the functions kn(x1, x2) as branches of

a multivalued function (Newton, 1982) which will be called the pole position
function.

In the case of a set {kn(x1, x2)} of isolated simple zeroes of the Jost function,
Eq. (2) may, in principle, be solved for each branch kn(x1, x2) without ambiguity,

kn(x1, x2) = f −1(0; x1, x2). (4)

Each branch kn(x1, x2) of the pole position function is a continuous, single-
valued function of the control parameters.

When the system has an isolated doublet of resonances which may become
degenerate, the corresponding two branches of the pole position function, say
kn(x1, x2) and kn+1(x1, x2), may be equal (cross or coincide) for some special
values of the control parameters. In this case, it is not always possible to solve
Eq. (2) for each individual branch without ambiguity and one should proceed to
solve Eq. (2) for the pole position function of the two members of the isolated
doublet of resonances.

To be precise, let us suppose that there is a finite bounded and connected
region M in parameter space and a finite domain D in the fourth quadrant of the
complex k-plane, such that, when (x1, x2) ε M, the Jost function has two and only
two zeroes, kn and kn+1, in the finite domainD ε C, all other zeroes of f (−k; x1, x2)
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lying outside D. Then, we say that the physical system has an isolated doublet
of resonances. To make this situation explicit, the two zeroes of f (−k; x1, x2),
corresponding to the isolated doublet of resonances may be explicitly factorized
as

f (−k; x1, x2) =
[(

k − 1

2
(kn + kn+1)

)2

− 1

4
(kn − kn+1)2

]

×gn,n+1(k, x1, x2). (5)

When the physical system moves in parameter space from the ordinary point
(x1, x2) to the exceptional point (x∗

1 , x∗
2 ), the two simple zeroes, kn(x1, x2) and

kn+1(x1, x2) coalesce into one double zero kd (x∗
1 , x∗

2 ) of the Jost function,

f (−k; x∗
1 , x∗

2 ) = (k − kd (x∗
1 , x∗

2 ))2gn,n+1(k; x∗
1 , x∗

2 ). (6)

Equation (5) may also be written as[
k − 1

2
(kn(x1, x2) + kn+1(x1, x2))

]2

−1

4
(kn(x1, x2) − kn+1(x1, x2))2 = f (−k; x1, x2)

gn,n+1(k; x1, x2)
, (7)

when the external parameters take values in a small neighborhood of the excep-
tional point (x∗

1 , x∗
2 ) ε M and k ε D, we may write

gn,n+1(k; x1, x2) ≈ gn,n+1(kd, x
∗
1 , x∗

2 ). (8)

Then, [
k − 1

2
(kn(x1, x2) + kn+1(x1, x2))

]2

−1

4
(kn(x1, x2) − kn+1(x1, x2))2 ≈ f (−k; x1, x2)

gn,n+1(kd ; x∗
1 , x∗

2 )
, (9)

the term [gn,n+1(kd ; x∗
1 , x∗

2 )]−1 multiplying f (−k; x1, x2) may be understood as a
finite, non-vanishing, constant scaling factor.

Hence, the qualitative features of the function

f̄doub(−k; x1, x2) =
[
k − 1

2
(kn(x1, x2) + kn+1(x1, x2))

]2

−1

4
(kn(x1, x2) − kn+1(x1, x2))2 , (10)

and the Jost function f (−k; x1, x2), as functions of (x1, x2), are the same close
to the exceptional point (x∗

1 , x∗
2 )εM for kεD. More formally, the Jost function
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f (−k; x1, x2) and the function f̄doub(−k; x1, x2) are contact equivalent at the ex-
ceptional point (x∗

1 , x∗
2 ) (Seydel, 1991).

The vanishing of the Jost function defines implicitly, the pole position func-
tion kn,n+1(x1, x2) of the isolated doublet of resonances[(

kn,n+1 − 1

2
(kn + kn+1)

)2

− 1

4
(kn − kn+1)2

]
gn,n+1(kn,n+1, x1, x2) = 0. (11)

If we restrict the external parameters to take values in the region M in
parameter space, the factor gn,n+1(kn,n+1; x1, x2) does not vanish when kn,n+1 ε D,
and it may be canceled in Eq. (11).

Solving for kn,n+1, we get

kn,n+1(x1, x2) = 1

2
(kn(x1, x2) + kn+1(x1, x2))

+
√

1

4
(kn(x1, x2) − kn+1 (x1, x2))2 (12)

with (x1, x2) ε M. Since the argument of the square-root function is complex,
it is necessary to specify the branch. Here and thereafter, the square root of any
complex quantity F will be defined by

√
F = |

√
F | exp

(
i
1

2
arg F

)
, 0 ≤ arg F ≤ 2π (13)

so that |√F | = √|F | and the F -plane is cut along the positive real axis. This defi-
nition specifies the first branch of kn,n+1(x1, x2), the second branch of kn,n+1(x1, x2)
is given by an expression similar to (12) but with a phase factor exp(iπ ) in front
of the square root in the right hand side of Eq. (12).

Equation (12) relates the pole position function of the doublet of resonances
to the pole position functions of the individual resonance states in the doublet.
When the two zeroes, kn and kn+1, coincide exactly, the Jost function has one
double zero at

kd = kn(x∗
1 , x∗

2 ) = kn+1(x∗
1 , x∗

2 ) (14)

with kd ε D in the fourth quadrant of the complex k-plane.
It is interesting to notice that, the pole position function of the isolated doublet

of resonances given in Eqs. (12) and (13), implicitly defined by the vanishing of
the Jost function, could also have been obtained from the vanishing of the function
f̄doub(−k; x1, x2).

Therefore, the pole position function of the doublet kn,n+1(x1, x2), as written
in Eq. (12), is contact equivalent (Seydel, 1991) to the multivalued pole position
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function of the isolated doublet of resonances

kn,n+1(x1, x2) = f −1(0; x1, x2) (15)

implicitly defined by the conditions,

f (−kn,n+1; x1, x2) = 0, (16)

and (
df (−k; x1, x2)

dk

)
kd

= 0, (17)

(
df 2(−k; x1, x2)

dk2

)
kd

�= 0, (18)

for (x1, x2) in a neighborhood of the exceptional point (x∗
1 , x∗

2 ) ε M and kε D.

2.1. The Analytical Behavior of the Pole-Position Function
at the Exceptional Point

The contact equivalence of the two expressions for the pole position function
of the isolated doublet of resonances, Eqs. (12) and (15)–(18), will allow us to
determine the nature of the singularity of this function at the crossing of resonances
in parameter space.

We will start by showing that the derivatives of the functions 1/2(kn(x1, x2) +
kn+1(x1, x2)) and 1/4(kn(x1, x2) − kn+1(x1, x2))2 are finite at the exceptional point.
Then, a Taylor series expansion of 1/4 (kn(x1, x2) − kn+1(x1, x2))2 at the excep-
tional point (x∗

1 , x∗
2 ) will give us the analytical behavior of kn,n+1(x1, x2) in the

neighborhood of the crossing of resonances, as function of (x1, x2).
The derivatives of kn(x1, x2) may be computed from the Jost function written

as (Krantz and Parks, 2002),

f (−k; x1, x2) = (k − kn(x1, x2)) (k − kn+1(x1, x2)) gn,n+1(k; x1, x2) (19)

then,[(
∂f (−k; x1, x2)

∂xi

)
xi+1

]
k=kn

= −
(

∂kn(x1, x2)

∂xi

)
xi+1

(kn − kn+1) gn,n+1(kn; x1, x2)

(20)
and a similar expression for [(∂f (−k; x1, x2)/∂xi)xi+1 ]kn+1 which is obtained from
Eq. (20) by exchanging kn(x1, x2) and kn+1(x1, x2). Notice that this exchange
changes the sign in the right hand side of Eq. (20). Adding the two derivatives and
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rearranging some terms we get[(
∂f (−k; x1, x2)

∂x1

)
x2

]
k=kn

+
[(

∂f (−k; x1, x2)

∂x1

)
x2

]
k=kn+1

= −1

4

(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x2

×(gn,n+1(kn; x1, x2) + gn,n+1(kn+1; x1, x2)) (21)

−1

2
(kn(x1, x2) − kn+1(x1, x2))

(
∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)
x2

×(gn,n+1(kn; x1, x2) − gn,n+1(kn+1; x1, x2))

and a similar expression for the derivatives with respect to x2.
When we take the limit as (x1, x2) goes to (x∗

1 , x∗
2 ), and, recalling that in this

limit kn(x∗
1 , x∗

2 ) = kn+1(x∗
1 , x∗

2 ) = kd , we get[(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x∗

2

]
k=kd

= −4

gn,n+1(kd ; x∗
1 , x∗

2 )

[(
∂f (−k; x1, x2)

∂x1

)
x∗

2

]
k=kd

. (22)

The term gn,n+1(kd ; x∗
1 , x∗

2 ) which appears in the denominator of the right
hand side of Eq. (22) may also be expressed in terms of derivatives of the Jost
function. From Eq. (19), a straightforward computation gives[(

∂2f (−k; x1, x2)

∂k2

)]
k=kd

= 2gn,n+1(kd ; x∗
1 , x∗

2 ). (23)

Substitution of this expression in Eq. (22), gives[(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x2

]
k=kd

= −8[(
∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=kd

[(
∂f (−k; x1, x2)

∂x1

)
x2

]
k=kd

. (24)

Notice that the function 1/4 (kn(x1, x2) − kn+1(x1, x2))2 vanishes at the ex-
ceptional point (x1, x2), but its first derivatives with respect to the external param-
eters at that point are finite and non-vanishing.
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However, the derivatives of the function 1/2 (kn(x1, x2) − kn+1(x1, x2)) do
not exist at the exceptional point (x∗

1 , x∗
2 ) ε M. From Eq. (24)⎡

⎣
(

∂ 1
2 (kn(x1, x2) − kn+1(x1, x2))

∂xi

)
xi+1

⎤
⎦

k=kd

= 1

(kn(x1, x2) − kn+1(x1, x2))

× −4[(
∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=kd

[(
∂2f (−k; x1, x2)

∂xi

)
xi+1

]
k=kd

(25)

the right hand side of this expression tends to infinity as (x1, x2) tends to (x∗
1 , x∗

2 )
and kn(x1, x2) − kn+1(x1, x2) vanishes.

A similar computation will give us the derivatives of 1/2(kn(x1, x2) +
kn+1(x1, x2)) with respect to the external parameters. From Eq. (20), we get[(

∂f (−k; x1, x2)

∂x1

)
x2

]
k=kn

−
[(

f (−k; x1, x2)

∂x1

)
x2

]
k=kn+1

= (kn+1(x1, x2) − kn(x1, x2))

(
∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)
x2

× 1

2
(gn,n+1(kn; x1, x2) + gn,n+1(kn+1; x1, x2))

− 1

2

(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x2

× 1

2
(gn,n+1(kn, x1, x2) − gn,n+1(kn+1, x1, x2)) (26)

Solving for [∂ (kn(x1, x2) + kn+1(x1, x2)) /∂x1]x2
, we obtain(

∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)
x2

= 2

gn,n+1(kn; x1, x2) + gn,n+1(kn+1, x1, x2)

× {[kn+1(x1, x2) − kn(x1, x2)]−1

×
[(

∂f (−k; x1, x2)

∂xi

)
x2,k=kn

−
(

∂f (−k; x1, x2)

∂x1

)
x2,k=kn+1

]

+ 1

2

(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x2

× 1

2

(
gn,n+1(kn; x1, x2) − gn,n+1(kn+1, x1, x2)

)
kn+1(x1, x2) − kn(x1, x2)

}
. (27)
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If we take the limit as (x1, x2) goes to (x∗
1 , x∗

2 ), kn(x∗
1 , x∗

2 ) = kn+1(x∗
1 , x∗

2 )
= kd (x∗

1 , x∗
2 ), we get

[(
∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)
x2

]
k=kd

= 1

gn,n+1(kd ; x∗
1 , x∗

2 )

×
{

−
(

∂2f (−k; x1, x2)

∂x1, ∂k

)
x∗

2 ,k=kd

− 1

2

(
∂ (kn(x1, x2) − kn+1(x1, x2))2

∂x1

)
x∗

2

× 1

2

(
∂gn,n+1(k; x1, x2)

∂k

)
k=kd

}
. (28)

Now from Eq. (5),

[
6

(
∂gn,n+1(k, x1, x2)

∂k

)
(x∗

1 ,x∗
2 )

]
kd

=
[(

∂3f (−k; x1, x2)

∂k3

)
x∗

1 ,x∗
2

]
kd

. (29)

When we substitute this expression and (23) and (24) for gn,n+1(kd ; x∗
1 , x∗

2 )
and [∂ (kn(x1, x2) − kn+1(x1, x2))2 /∂x1]x2,kd

in Eq. (28), and rearranging some
terms, we finally get

1

2

[(
∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)
x2

]
k=kd

= −1[(
∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=dd

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[(

∂2f (−k; x1, x2)

∂x1, ∂k

)
(x∗

1 ,x∗
2 )

]
k=kd

− 1[(
∂2f (−k;x1,x2)

∂k2

)
(x∗

1 ,x∗
2 )

]
k=kd

× 1

3

[(
∂3f (−k; x1, x2)

∂k3

)
(x∗

1 ,x∗
2 )

]
k=kd

[(
∂f (−k; x1, x2)

∂x1

)
(x∗

1 ,x∗
2 )

]
k=kd

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(30)

and a similar expression for [∂ (kn(x1, x2) + kn+1(x1, x2)) /∂x2]x1
.

In this way, we have shown that the first derivatives of the functions
1/2 [kn(x1, x2) + kn+1(x1, x2)] and 1/4 [kn(x1, x2) − kn+1(x1, x2)]2 with respect
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to the external parameters are finite and non-vanishing at the exceptional point
(x∗

1 , x∗
2 ).

From these results, the first terms in a Taylor series expansion of the func-
tions 1/2 (kn(x1, x2) + kn+1(x1, x2)) and 1/4 (kn(x1, x2) − kn+1(x1, x2))2 about the
exceptional point (x∗

1 , x∗
2 ) are

1

2
(kn(x1, x2) + kn+1(x1, x2)) = kd

+
2∑

i=1

d
(1)
i (xi − x∗

i ) + O
(
(xi − x∗

i )2
)

(31)

and

(kn(x1, x2) − kn+1(x1, x2))2

=
2∑

i=1

c
(1)
i (x1 − x∗

i ) + O((xi − x∗
i )2). (32)

The derivatives c
(1)
i and d

(1)
i , expressed in terms of derivatives of the Jost

function at the degeneracy point, are given in Eqs. (24) and (30), respectively.
Substitution of these expressions in Eq. (12) gives a simple but accurate

representation of the analytical behavior of the wave number-pole position function
as function of the control parameters

kn,n+1(x1, x2) ≈ k̂n,n+1(x1, x2) (33)

where

k̂n,n+1(x1, x2) = kd + �kd (x1, x2)

+
√

1

4

[
c

(1)
1 (x1 − x∗

1 ) + c
(1)
2

(
x2 − x

(∗)
2

)]
(34)

for (x1, x2) in a small neighborhood of the exceptional point (x∗
1 , x∗

2 ).
Energy-pole position function: this result may readily be translated into a

similar assertion for the resonance energy eigenvalues, En(x1, x2) and En+1(x1, x2),
of the isolated doublet of resonances.

Let us take the square of both sides of Eq. (12), multiplying them by h2/2m

and recalling Eq. (1), we get

En,n+1(x1, x2) = 1

2
(En(x1, x2) + En+1(x1, x2))

+
√

1

4
(En(x1, x2) − En+1(x1, x2))2 (35)
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where

1

2
(En(x1, x2) + En+1(ξ1, ξ2)) = h2

2m

[
1

4
(kn(x1, x2) + kn+1(x1, x2))2

+ 1

4
(kn(x1, x2) − kn+1(x1, x2))2

]
. (36)

The first two terms in square brackets in the right hand side of this equation
are regular functions of (x1, x2) at the exceptional point, and may be expanded
in a Taylor series about (x∗

1 , x∗
2 ) according to Eqs. (31) and (32). The term under

the square root in the right hand side of Eq. (35) is also a regular function of the
external parameters at the exceptional point, since it is the product of two regular
functions,

1

4
(En(x1, x2) − En+1(x1, x2))2 =

(
h2

2m

)2
1

4
(kn(x1, x2) − kn+1(x1, x2))2

× (kn(x1, x2) + kn+1(x1, x2))2 . (37)

However, the difference of the two complex resonance energy eigenvalues,

1

2
(En(x1.x2) − En+1(x1, x2)) =

(
h2

2m

)
(kn(x1, x2) + kn+1(x1, x2))

× 1

2
(kn(x1, x2) − kn+1(x1, x2)) , (38)

is not a regular function of the external parameters since the derivatives of
1/2 (kn(x1, x2) − kn+1(x1, x2)) do not exist at the exceptional point.

Therefore, the behavior of the complex resonance energy eigenvalues
En(x1, x2) and En+1(x1, x2) as functions of the control parameters (x1, x2) close to
the exceptional point (x∗

1 , x∗
2 ) is obtained from the expression

En,n+1(x1, x2) ≈ Ên,n+1(x1, x2), (39)

Ên,n+1(x1, x2) = Ed + �Ed +
√

1

4

[
C

(1)
1 (x1 − x∗

1 ) + C
(1)
2 (x2 − x∗

2 )
]
, (40)

where

C
(1)
i =

(
h2kd

m

)2

c
(1)
i . (41)

To examine the precise nature of the singularity of the energy-pole position
function En,n+1(x1, x2), as a function of the real parameters (x1, x2), it will be
convenient to fix the origin of coordinates at the exceptional point and change
slightly the notation.
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We introduce three vectors in parameter space

�ξ =
(

ξ1

ξ2

)
=
(

x1 − x∗
1

x2 − x∗
2

)
, (42)

�R =
(

Re C
(1)
1

Re C
(1)
2

)
(43)

and

�I =
(

Im C
(1)
1

Im C
(1)
2

)
. (44)

The components of the real fixed vectors �R and �I are the real and imaginary
parts of the coefficients C

(1)
i of (xi − x∗

i ) in the Taylor expansion of the function
1/4 (En(x1, x2) − En+1(x1, x2))2 and the real vector �ξ is the position vector of the
point (x1, x2) relative to the exceptional point (x∗

1 , x∗
2 ) in parameter space.

Let us call ε2
n,n+1(x1, x2) the term which appears under the square root in the

right hand side of Eq. (40)

ε2
n+1(x1, x2) = 1

4
(En(x1, x2) − En,n+1(x1, x2))2 (45)

and let ε̂2
n,n+1(x1, x2) be the first order term in the Taylor expansion of

1/4 (En(x1, x2) − En+1(x1, x2))2 about (x∗
1 , x∗

2 ), which appears under the square
root in the right hand side of Eq. (40). Then,

εn,n+1 ≈ ε̂n,n+1(x1, x2), (46)

where

ε̂n,n+1(x1, x2) =
√

1

4

[
C

(1)
1 (x1 − x∗

1 ) + C
(1)
2 (x2 − x∗

2 )
]
, (47)

En,n+1(x1, x2) ≈ Ed + �Ed (x1, x2) + ε̂n,n+1(x1, x2), (48)

or, in the notation defined in Eqs. (42)–(44),

ε̂2
n,n+1(x1, x2) = 1

4
(( �R · �ξ ) + i( �I · �ξ )) (49)

and

|ε̂n,n+1(x1, x2)|2 = +
√

1

4
(( �R · �ξ )2 + ( �I · �ξ )2). (50)

From the identities

(Re ε)2 = 1

4
(ε2 + ε∗2 + 2εε∗) = 1

2
(Re (ε2) + |ε|2) (51)
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and

(Im ε)2 = 1

2
(|ε|2 − Re (ε2)), (52)

and Eqs. (47)–(49), we obtain

(Re ε̂n,n+1(x1, x2))2 = 1

8

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 + �R · �ξ] (53)

and

(Im ε̂n,n+1(x1, x2))2 = 1

8

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 − �R · �ξ]. (54)

Since the square root term inside the brackets is positive, the functions
(Re ε̂n,n+1(x1, x2))2 and (Im ε̂n,n+1(x1, x2))2 are real, positive, single-valued func-
tions of (ξ1, ξ2).

Therefore, the real and imaginary parts of the function ε̂n,n+1(x1, x2) are

Re ε̂n,n+1(x1, x2) = ± 1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 + �R · �ξ]1/2
, (55)

Im ε̂n,n+1(x1, x2) = ± 1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 − �R · �ξ]1/2
. (56)

Now, from the Eq. (49) we obtain

sign (Re ε̂n,n+1(ξ1, ξ2)) sign (Im ε̂n,n+1(ξ1, ξ2)) = sign ( �I · �ξ ). (57)

It follows from Eq. (55), that close to the exceptional point (origin of coordi-
nates), Re ε̂n,n+1(x1, x2) is a two branched function of (ξ1, ξ2) which may be rep-
resented as a two-sheeted surface SR , in a three dimensional Euclidean space with
Cartesian coordinates (Re ε̂n,n+1, ξ1, ξ2). The two branches of Re ε̂n,n+1(ξ1, ξ2) are
represented by two sheets which are copies of the plane (ξ1, ξ2) cut along a line
where the two branches of the function are joined smoothly. Since a negative and
a positive numbers are equal only when both vanish, the cut is defined as the locus
of the points where the argument of the square root function in the right hand side
of Eq. (55) vanishes.

Close to the origin of coordinates (the exceptional point), this locus is defined
by a unit vector ξ̂c in the (�ξ1, �ξ2), plane such that

�I · ξ̂c = 0 and �R · ξ̂c = −| �R · ξ̂c| (58)

Therefore, the real part of the energy-pole position function,
Re En,n+1(x1, x2), as a function of the real parameters (x1, x2), has an algebraic

branch point of square root type (rank one) at the exceptional point with coordinates
(x∗

1 , x∗
2 ) in parameter space, and a branch cut along a line, LR , that starts at the

exceptional point and extends in the positive direction defined by the unit vector
ξ̂c satisfying Eq. (58).
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A similar analysis shows that, the imaginary part of the energy-pole position
function, Im En,n+1(x1, x2), as a function of the real parameters (x1, x2), also has
an algebraic branch point of square root type (rank one) at the exceptional point
with coordinates (x∗

1 , x∗
2 ) in parameter space, and also has a branch cut along a

line, LI , that starts at the exceptional point and extends in the negative direction
defined by the unit vector ξ̂c satisfying Eq. (58).

The branch cut lines, LR and LI , are orthogonal to each other – they are
in orthogonal subspaces of a four dimensional Euclidean space with coordinates
(Re εn,n+1, Im εn,n+1, ξ1, ξ2) – but have one point in common, the exceptional
point with coordinate (x∗

1 , x∗
2 ).

Along the line LR , excluding the exceptional point (x∗
1 , x∗

2 ),

Re En(x1, x2) = Re En+1(x1, x2), (59)

but

Im En(x1, x2) �= Im En+1(x1, x2). (60)

Similarly, along the line LI , excluding the exceptional point,

Im En(x1, x2) = Im En+1(x1, x2), (61)

but

Re En(x1, x2) �= Re En+1(x1, x2). (62)

Equality of the complex resonance energy eigenvalues (degeneracy of reso-
nances),

En(x∗
1 , x∗

2 ) = En+1(x∗
1 , x∗

2 ) = Ed (63)

occurs only at the exceptional point with coordinates (x∗
1 , x∗

2 ) in parameter space
and only at that point.

In consequence, in the complex energy plane, the crossing point of two simple
resonance poles of the scattering matrix is an isolated point where the scattering
matrix has one double resonance pole.

Let us end this section with the following remark: in the general case, a vari-
ation of the vector of parameters causes a perturbation of the energy eigenvalues.
In the particular case of a double complex resonance energy eigenvalue Ed , associ-
ated with a chain of length two of generalized Jordan-Gamow eigenfunctions, we
are considering here, the perturbation series expansion of the eigenvalues En, En+1

about Ed in terms of the small parameter |ξ |, Eqs. (48)–(49), takes the form of a
Puiseux series

En,n+1(x1, x2) = Ed + |ξ |1/2

√
1

4
[( �R · ξ̂ ) + i( �I · ξ̂ )]

+�Ed (x1, x2) + O(|ξ |3/2) (64)
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with fractional powers |ξ |j/2, j = 0, 1, 2, ... of the small parameter |ξ | (Kato,
1980).

3. UNFOLDING OF THE DEGENERACY POINT

In Section 2, the pole position function of the isolated doublet of resonances
was implicitly defined by the vanishing of the Jost function, Eq. (15), and the con-
ditions (16)–(18). By formally solving those equations, we introduced an explicit
expression for the double-valued energy-pole position function, En,n+1(ξ1, ξ2), in
terms of the individual resonance energy eigenvalues of the individual compo-
nents of the isolated doublet of resonances through Eqs. (12) and (35). However,
an explicit association of each individual resonance energy eigenvalue with the
branches of the pole position function was not made. The function En,n+1(ξ1, ξ2)
was later approximated by the expressions

En,n+1(ξ1, ξ2) ≈ Ed + �Ed (ξ1, ξ2) + ε̂n,n+1(ξ1, ξ2) (65)

where, the single valued function

�Ed (ξ1, ξ2) ≈ 1

2
(En(ξ1, ξ2) + En+1(ξ1, ξ2)) − Ed (66)

is explicitly given in Eqs. (38)–(40), and, the double valued function

ε̂n,n+1(ξ1, ξ2) ≈ ±
√

1

4
(En(ξ1, ξ2) − En+1(ξ1, ξ2))2 (67)

is explicitly given in Eqs. (55) and (56).
In this section we will associate the individual resonance energy eigenvalues

with the branches of the pole position function En,n+1(ξ1, ξ2) and its contact
equivalent approximation Ên,n+1(ξ1, ξ2).

Let us start by observing that, the two functions on the right hand side of Eqs.
(66) and (67) are invariant under the exchange of the indices n and n + 1, showing
that these equations by themselves do not determine completely the association of
each individual energy eigenvalue with the branches of the pole position function.
This is so, because the labeling of the individual resonance energy eigenvalues
with the indices n and n + 1 is purely a matter of convention.

In order to fix this convention, let us consider a point (ξ1, ξ2) in a neighborhood
of, but not equal to, the exceptional point, and which is not in any of the two
branch cut lines. To this point corresponds a pair of non-degenerate complex
resonance energy eigenvalues, labeled En(ξ1, ξ2) and En+1(ξ1, ξ2). Then, close to
the exceptional point, the energy eigenvalues and the function ε̂n,n+1(ξ1, ξ2) will,
initially and conventionally, be related by

ε̂n,n+1(ξ1, ξ2) ≈ 1

2
(En(ξ1, ξ2) − En+1(ξ1, ξ2)) . (68)
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This relation is the convention that was missing in Eqs. (12)–(13) and (36)–
(37) to completly define the association of each individual energy eigenvalue
with the energy-pole position function. However, once this convention is fixed, it
determines the way in which the function Re εn,n+1(ξ1, ξ2) and Im εn,n+1(ξ1, ξ2)
are initially related to the energy eigenvalues.

Therefore, from (67) and (68), when Re En(ξ1, ξ2) > Re En+1(ξ1, ξ2) we get

Re En(ξ1, ξ2) = 1

2
Re (En(ξ1, ξ2) + En+1(ξ1, ξ2)) + Re ε

(+)
n,n+1(ξ1, ξ2), (69)

and

Re En+1(ξ1, ξ2) = 1

2
Re (En(ξ1, ξ2) + En+1(ξ1, ξ2)) + Re ε

(−)
n,n+1(ξ1, ξ2). (70)

In these expressions ε
(+)
n,n+1 is the positive branch of εn,n+1 and ε

(−)
n,n+1 is the

negative branch.
When Re En(ξ1, ξ2) < Re En+1(ξ1, ξ2), the branch signature labels (+) and

(−) on εn,n+1(ξ1, ξ2) in the right hand side of Eqs. (69) and (70) are exchanged.
The imaginary parts of the energy eigenvalues, Im En(ξ1, ξ2) and Im En+1(ξ1,

ξ2), are associated with the branches of the real function Im εn,n+1(ξ1, ξ2) according
to a similar rule.

When Im En+1(ξ1, ξ2) > Im En(ξ1, ξ2), we get

Im En(ξ1, ξ2) = Im
1

2
(En(ξ1, ξ2) + En+1(ξ1, ξ2)) + Im ε

(−)
n,n+1(ξ1, ξ2) (71)

and

Im En+1(ξ1, ξ2) = Im
1

2
(En(ξ1, ξ2) + En+1(ξ1, ξ2)) + Im ε

(+)
n,n+1(ξ1, ξ2). (72)

When the point (ξ1, ξ2) is on the projection of the branch cut line L′
R ,

Re En(ξ1, ξ2) = Re En+1(ξ1, ξ2), (73)

but

Im En(ξ1, ξ2) �= Im En+1(ξ1, ξ2). (74)

Similarly, when the point (ξ1, ξ2) is on the projection of the branch cut line
L′

I ,

Im En(ξ1, ξ2) = Im En+1(ξ1, ξ2), (75)

but
Re En(ξ1, ξ2) �= Re En+1(ξ1, ξ2). (76)

When the point that represents the control parameters of the physical system
moves continuously in parameter space along a path that crosses the projection
of the branch cut line L′

R , Re En(ξ1, ξ2) goes continuously from the positive to
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the negative branch of Re εn,n+1(ξ1, ξ2), while Re En+1(ξ1, ξ2) changes smoothly
from the negative to the positive branch of Re εn,n+1(ξ1, ξ2). When the point
(ξ1, ξ2) crosses the line L′

R , the sense of the inequality that defines the branch
signature label is inverted, and the rule that associates the real part of the en-
ergy eigenvalues, En(ξ1, ξ2) and En+1(ξ1, ξ2), with the branches of the function
Re εn,n+1(ξ1, ξ2) is still satisfied. A similar reasoning shows that when the point
(ξ1, ξ2) moves continuously along a path that crosses the projection of the branch
cut line L′

I , the rule that associates the imaginary parts of the energy eigenvalues,
En(ξ1, ξ2) and En+1(ξ1, ξ2), with the branches of the function Im εn,n+1(ξ1, ξ2) is
also satisfied.

It follows from these rules that, close to the exceptional point, the energy
eigenvalues are given by the expression

Ên(ξ1, ξ2) = Ed + �En,n+1(ξ1, ξ2)

+ σ
(n)
R

1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 + ( �R · �ξ )
]1/2

(77)

+ iσ
(n)
I

1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 − ( �R · �ξ )
]1/2

and

Ên+1(ξ1, ξ2) = Ed + �En,n+1(ξ1, ξ2)

+ σ
(n+1)
R

1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 + ( �R · �ξ )
]1/2

(78)

+ iσ
(n+1)
I

1

2
√

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 − ( �R · �ξ )
]1/2

,

where σR and σI are the signatures of the branches of the square root function.

σ
(n)
R = Re En − Re En+1

|Re En − Re En+1| , (79)

σ
(n)
I = Im En − Im En+1

|Im En − Im En+1| (80)

and

σ
(n+1)
R = −σ

(n)
R and σ

(n+1)
I = −σ

(n)
I . (81)

Therefore, when the point (ξ1, ξ2) moves on a continuous path in parameter
space, the resonance energy eigenvalues (poles of the S-matrix) move in two
different continuous trajectories in the unphysical sheet of the complex energy
plane. When the point (ξ1, ξ2) goes around the exceptional point once in a closed
path, it crosses the two branch cut lines once each one, and the two resonance
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energy eigenvalues, En(ξ1, ξ2) and En+1(ξ1, ξ2), move along two different, non-
crossing, continuous trajectories in the complex energy plane in such a way that
the En trajectory ends at the point where the En+1 trajectory starts out, and the
En+1-trajectory ends at the starting point of the En-trajectory.

Therefore, when the system goes around the exceptional point once in pa-
rameter space, the positions of the resonance energy eigenvalues (poles of the
S-matrix) are exchanged in the complex energy plane. Two circuits around the
exceptional point in parameter space are required to make the energy eigenvalues
return to their initial positions in the complex energy plane.

Now, we may show that the family of functions Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2),
given in Eqs. (77) and (78) is a universal unfolding of the degeneracy or crossing
point of the two unbound state energy eigenvalues (two resonance poles of the
S(E) matrix) in parameter space.

In order to do this, let us introduce a function f̂doub(−k; ξ1, ξ2) related to
the contact equivalent approximate pole position functions k̂n,n+1(ξ1, ξ2) and
Ên,n+1(ξ1, ξ2), in the same way as f̄doub(−k; ξ1, ξ2) is related to the exact pole
position functions En(ξ1, ξ2) and En+1(ξ1, ξ2).

When the regular functions 1/2(kn(x1, x2) + kn+1(x1, x2)) and 1/4(kn(x1,
x2) − kn+1(x1, x2))2 occurring in Eq. (10) are expanded in a Taylor series about
the exceptional point and we keep only the terms of first order, as in Eqs. (31) and
(32), we get

f̄doub(−k; ξ1, ξ2) = f̂doub(−k; ξ1, ξ2) + δf̂doub(ξ1, ξ2), (82)

where

f̂doub(−k; ξ1, ξ2) = [k − (kd + �(1)kd (x1, x2)
)]2

− 1

4
(( �R · �ξ ) + i(�I · �ξ )), (83)

and

�(1)kd (x1, x2) =
2∑

i=1

d
(1)
i ξi . (84)

The complex constants d
(1)
i are the coefficients of the terms of first order in

the Taylor series expansion of the function 1/2 (kn(ξ1, ξ2) + kn+1(ξ1, ξ2)), given
in Eqs. (30) and (31), and the components of the real vectors �R and �I are the real
and imaginary parts of the coefficients of the first order terms in the Taylor series
expansion of the function 1/4 (kn(ξ1, ξ2) − kn+1(ξ1, ξ2))2, given in Eqs. (24) and
(30), respectively.

The term δf̂doub(ξ1, ξ2) is independent of k, and, as function of (ξ1, ξ2) van-
ishes at the exceptional point as, or faster than ξ 2

i .
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From the definition of f̂doub(−k; ξ1, ξ2), Eq. (82), the two functions,
f̄doub(−k; ξ1, ξ2) and f̂doub(−k; ξ1, ξ2) are related by

f̂doub(−k; ξ1, ξ2) = ζ (k − dd ; ξ1, ξ2)f̄doub(−k; ξ1, ξ2), (85)

where ζ (k − kd ; ξ1, ξ2) is a scaling factor

ζ (k − kd ; ξ1, ξ2) = 1 − δf̂doub(ξ1, ξ2)

f̂doub(−k; ξ1, ξ2) + δf̂doub(ξ1, ξ2)
(86)

at the exceptional point

ζ (0; 0, 0) = 1. (87)

Hence, the function f̄doub(−k; ξ1, ξ2) and f̂doub(−k; ξ1, ξ2) are contact equiv-
alent at the exceptional point (Seydel, 1991).

From the transitivity of the contact equivalence relation, if f̂doub(−k; ξ1, ξ2)
and f̄doub(−k; ξ1, ξ2) are contact equivalent at the exceptional point and
f̄doub(−k; ξ1, ξ2) and the Jost function f (−k; ξ1, ξ2) are also contact equivalent
at the exceptional point, it follows that f̂doub(−k; ξ1, ξ2) and the Jost function
f (−k; ξ1, ξ2) are contact equivalent at the exceptional point.

Then, locally f̂doub(−k; ξ1, ξ2) is contact equivalent to the Jost function
f (−k; ξ1, ξ2), at the exceptional point. It is also an unfolding (Seydel, 1991;
Poston and Stewart, 1978) of f (−k; ξ1, ξ2) with the following two features:

1. It includes all possible small perturbation of the degeneracy conditions

f (−k; ξ1, ξ2) = 0, (88)(
∂f (−k; ξ1, ξ2)

∂k

)
kd

= 0, (89)

(
∂2f (−k; ξ1, ξ2)

∂k2

)
kd

�= 0 (90)

up to contact equivalence.
2. It uses the minimum number of parameters, namely two, which is the

codimension of the degeneracy (Seydel, 1991; Poston and Stewart, 1978).
Here, the two parameters are ξ1 and ξ2.

Therefore, f̂doub(−k; ξ1, ξ2) is a universal unfolding (Seydel, 1991) of the Jost
function f (−k; ξ1, ξ2) at the exceptional point, ξ1 = 0, ξ2 = 0 (where kn+1(0, 0) =
kn,n+1(0, 0) = kd ).

The vanishing of f̂doub(−k; ξ1, ξ2) defines the approximate wave number-
pole position function

k̂n,n+1(ξ1, ξ2) = kd + �
(1)
n,n+1(ξ1, ξ2) ±

[
1

4
( �R · �ξ + i �I · �ξ )

]1/2

(91)
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and the corresponding energy-pole position functions Ên,n+1(ξ1, ξ2) given in
Eq. (65)

Since the functions Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2) are obtained from the vanishing
of the universal unfolding f̂doub(−k; ξ1, ξ2) of the Jost function f (−k; ξ1, ξ2) at
the exceptional point, we are justified in saying that, the family of functions
Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2), given in Eqs. (77) and (78), is a universal unfolding
or deformation of any degeneracy or crossing point of two unbound state energy
eigenvalues, which is contact equivalent to the exact energy-pole position function
of the isolated doublet of resonances at the exceptional point, and includes all small
perturbations of the degeneracy conditions up to contact equivalence.

4. CROSSINGS AND ANTICROSSINGS

The energy-pole position function En,n+1(ξ1, ξ2) defined in Eqs. (35)–(40) and
(48)–(49), may be represented as a hypersurface in a four-dimensional Euclidean
space, E4, with Cartesian coordinates (Re εn,n+1, Im εn,n+1, ξ1, ξ2). The space E4

is the Cartesian product ε × P of the complex energy plane ε and the (ξ1, ξ2)-
plane which is the parameter space P of the physical system. We fix the origin
of coordinates in the complex ε-plane at the branch point of the pole position
function, and the origin of coordinates in parameter space P at the exceptional
point.

4.1. Energy Surfaces

From Eqs. (55)–(58), it can be seen that close to the exceptional point (0, 0),
where the two resonance energy eigenvalues become degenerate, the function
Re ε̂n,n+1(ξ1, ξ2) has two branches and the surface SR representing this function
has two sheets which are glued together from two copies of the plane (ξ1, ξ2)
which are cut and joined smoothly along the line LR . The projection of LR on
the plane (ξ1, ξ2) is a line L′

R . The branch cut line LR starts at the crossing or
critical point, with coordinates (0, 0, 0, 0), and extends from this point into the
subspace (0, Im ε̂n,n+1, ξ1, ξ2) in the positive direction defined by the unit vector
ξ̂o satisfying Eq. (58).

The function Im ε̂n,n+1(ξ1, ξ2) also has two branches, and the surface SI

representing this function has two sheets which are glued together from two
copies of the plane (ξ1, ξ2) which are cut and joined smoothly along a line LI . The
projection of the line LI on the plane (ξ1, ξ2) is also a line L′

I on the plane (ξ1, ξ2).
As in the case of Re ε̂n,n+1(ξ1, ξ2), the cut starts at the degeneracy (crossing or
critical) point with coordinates (0, 0, 0, 0), but in this case the cut extends into the
subspace (Re ε̂n,n+1, 0, ξ1, ξ2) in the negative direction defined by the unit vector
ξ̂c satisfying Eq. (58).
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The lines LR and LI are in orthogonal subspaces, but have one point in
common, the exceptional point (0, 0) ε P.

The projections of the lines LR and LI , on the plane (ξ1, ξ2) are the two
halves of the line L′. Both halves of L′ start at the exceptional point, but they
extend in opposite directions.

4.2. Sections of the Energy Surfaces

Let us consider a point (ξ1, ξ2) in parameter space away from the excep-
tional point. To this point corresponds a pair of non-degenerate resonance energy
eigenvalues

En(ξ1, ξ2) �= En+1(ξ1, ξ2), (ξ1, ξ2) �= (0, 0) ε P. (92)

These two resonance energy eigenvalues are represented by two points on the
hypersurface representing the function εn,n+1(ξ1, ξ2) defined in Eq. (45).

When the point (ξ1, ξ2) traces a path π in parameter space, the corresponding
pointsEn(ξ1, ξ2) andEn+1(ξ1, ξ2) trace two curving trajectories, Cn(π ) and Cn+1(π )
on the εn,n+1(ξ1, ξ2) hypersurface.

The contact equivalent approximant ε̂n,n+1(ξ1, ξ2) of εn,n+1(ξ1, ξ2) may also
be represented as a hypersurface in E4. In this case, to a point (ξ1, ξ2) �= (0, 0) in
parameter space corresponds a pair of points

Ên(ξ1, ξ2) �= Ên+1(ξ1, ξ2), (ξ1, ξ2) �= (0, 0) ε M ⊂ P (93)

on the ε̂n,n+1(ξ1, ξ2)-hypersurface. When the point (ξ1, ξ2) traces a path π in
parameter space, the corresponding points Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2) trace two
curving trajectories, Ĉn(π ) and Ĉn+1(π ) on the ε̂n,n+1(ξ1, ξ2)-hypersurface.

The topological structure of the hypersurfaces εn,n+1(ξ1, ξ2) and ε̂n,n+1(ξ1, ξ2)
close to the crossing point will be most clearly evident in the shape and properties
of the trajectories, Cn(π ) and Cn+1(π ) and, Ĉn(π ) and Ĉn+1(π ), respectively, for
paths that cross the line L′ at points close to the exceptional point.

We define three straight line paths in parameter space, π1, π2 and π3, by
keeping the parameter ξ2 fixed at some value ξ̄

(i)
2

ξ2 = ξ̄
(i)
2 , i = 1, 2, 3, (94)

and letting ξ1 vary. The values of ξ̄
(i)
2 are chosen in such a way that the paths,

π1, π2 and π3, cross the line L′ at points located just before, at, and just after
the exceptional point. That is, π1 crosses the line L′

I at a point just before the
exceptional point, π2 crosses the line L′ at the exceptional point which is the only
point that L′

R and L′
I have in common, π3 crosses the line L′

R at a point just after
the exceptional point.

The condition (94) also defines three hyperplanes in the space E4. The
intersections of the hypersurface εn,n+1(ξ1, ξ2) with the hyperplanes, ξ2 = ξ̄

(i)
2 ,
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are the trajectories Cn(πi) and Cn+1(πi) and the intersection of the hypersur-
face ε̂n,n+1(ξ1, ξ2) with the hyperplanes ξ2 = ξ̄

(i)
2 are the trajectories Ĉ(πi) and

Ĉn+1(πi).
In the general case, the energy-pole position function, En,n+1(ξ1, ξ2), is not

known as an explicit function of the control parameters of the system. The trajec-
tories, Cn(πi) and Cn+1(πi), may be computed numerically only after the equation
defining implicitly the pole position function is solved numerically. In the general
case, this is a rather arduous task.

In a companion paper (Hernández et al., 2007), we give the results of
solving numerically the implicit Eqs. (16)–(18) for the pole position function,
kn,n+1(ξ1, ξ2), in the case of a degeneracy of an isolated doublet of resonances
in the scattering of a beam of particles by a double barrier potential well with
two regions of trapping. The resulting Re kn,n+1(ξ1, ξ2), Im kn,n+1(ξ1, ξ2) and the
trajectories Cn(πi) and Cn+1(πi) are shown as three dimensional graphs Figs. 8, 9
and 10, of that paper (Hernández et al., 2007).

When the functional dependence of the Jost function on the control parame-
ters is known and the coefficients c

(1)
i and C

(1)
i occurring in Eqs. (34) and (40) may

be calculated, the contact equivalent approximant for the pole position function,
Ên,n+1(ξ1, ξ2), and the contact equivalent approximant trajectories, Ĉn(πi), and
Ĉn+1(πi) may be analytically computed from Eqs. (40), (55)–(57) and (77) and
(78), as will be explained below. In Figs. 1, 2 and 3, in this paper we show the
trajectories Ĉn(πi) and Ĉn+1(πi) for the example discussed in Hernández et al.
(2007). In these figures, the numerically computed exact trajectories Cn(πi) and
Cn,n+1(πi) are not shown, because they can hardly be distinguished from the
contact aproximants Ĉn(πi) and Ĉn+1(πi).

4.3. Projections

The trajectories, Ĉn(πi) and Ĉn+1(πi), are the intersection of the surface
ε̂n,n+1 and the hyperplanes ξ2 = ξ̄

(i)
2 in the space E4 with Cartesian coordinates

(Re E, Im E, ξ1, ξ2). Since ξ2 is kept constant at the fixed value ξ̄
(i)
2 , the trajectories

(sections), Ĉn(πi) and Ĉn+1(πi), may be represented as three dimensional curves
in a space E3 with Cartesian coordinates (Re E, Im E, ξ1).

The projections of the trajectories Ĉn(πi) and Ĉn+1(πi), on the plane (ReE, ξ1)
are

Re [Ĉn(πi)] = Re Ên

(
ξ1, ξ̂

(i)
2

)
(95)

and

Re [Ĉn+1(πi)] = Re Ên+1
(
ξ1, ξ̂

(i)
2

)
. (96)
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Fig. 1. The curves Ĉn(π1) and Ĉn+1(π1) are the trajectories traced by
the points Ên(d, V3) and Ên+1(d, V3) on the hypersurface Ên,n+1(d, V3)
when the point (d, V3) moves along the straight line path π1 in parameter
space. In the figure, the path π1 runs parallel to the vertical axis and
crosses the line LI at a point (d(1), V

(1)
3 ) with d(1) < d∗ and V̄

(1)
3 < V ∗

3 .
The projections of Ĉn(π1) and Ĉn+1(π1) on the plane (Im E, d) are
sections of the surface SI ; the projections of Ĉn(π1) and Ĉn+1(π1) on
the plane (Re E, d) are sections of the surface SR . The projections of
Ĉn(π1) and Ĉn+1(π1) on the plane (Re E, Im E) are the trajectories of
the S-matrix poles in the complex energy plane.

Analytical expressions for the right hand sides of these equations are obtained
setting ξ2 = ξ̄

(i)
2 in Eqs. (77) and (78). In this way, we get

Re [Ên

(
ξ1, ξ̄

(i)
2

)
] = σ

(n)
R

2
√

2
|c(1)

1 |[+
√

ξ 2
1 + 2zi cos(φ1 − φ2)ξ1 + z2

i

+ (cos φ1ξ1 + cos φ2zi)]
1/2. (97)

The constants that appear in the right hand side of this equation are obtained
from the expansion coefficients C

(1)
j , �R and �I occurring in Eqs. (47) and (55)–(57)

zi =
∣∣∣∣∣c

(1)
2

c
(1)
1

∣∣∣∣∣ ξ̄ (i)
2 , (98)
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Fig. 2. The curves Ĉn(π2) and Ĉn+1(π2) are the trajectories of the points
Ên(d, V ∗

3 ) and Ên+1(d, V ∗
3 ) on the hypersurface Ên,n+1(d, V3) when the

point (d, V ∗
3 ) moves along a straight line path π2 that goes through

the exceptional point (d∗, V ∗
3 ) in parameter space. The projections of

Ĉn(π2) and Ĉn+1(π2) on the planes (Re E, d) and (Im E, d) are sections
of the surfaces SR and SI , respectively, and show a joint crossing of
energies and widths. The projections of Ĉn(π2) and Ĉn+1(π2) on the
plane (Re E, Im E) are two straight line trajectories of the S-matrix
poles – crossing at 90◦ in the complex energy plane. At the crossing
point, the two simple poles coalesce into one double pole of S(E).

and

cos φ1 = R1∣∣c(1)
1

∣∣ , cos φ2 = R2∣∣c(1)
2

∣∣ . (99)

From (78) and (81), we get

Re [Ĉn+1(πi)] = −Re [Ĉn(πi)]. (100)

The projections of the trajectories Ĉn(π ) and Ĉn+1(πi) on the plane (Im E, ξ1)
are obtained from a similar argument

Im [Ĉn(πi)] = Im Ên

(
ξ1, ξ̄

(i)
2

)
, (101)

where

Im Ên

(
ξ1, ξ̄

(i)
2

) = σ
(n)
I

2
√

2

∣∣c(1)
1

∣∣[+√ξ 2
1 + 2zi cos(φ1 − φ2)ξi + z2

i

−(cos φ1ξ1 + cos φ2z1)
]1/2

(102)
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Fig. 3. The curves Ĉn(π3) and Ĉn+1(π3) are the trajectories traced
by the points Ên(d, V̄

3)
3 ) and Ên+1(d, V̄

(3)
3 ) on the hypersurface

En,n+1(d, V3) when the point (d, V̄
(3)
3 ) moves along a straight line

path π3 going through the point (d̄(3), V̄
(3)
3 ) with d̄(3) > d∗. The path

π3 crosses the line LR . The projections of Ĉn(π3) and Ĉn+1(π3) on
the plane (Re E, d) show a crossing, but the projections on the planes
(Im E, d) and (Re E, Im E) do not cross.

and

Im [Ĉn+1(πi)] = −Im [Ĉn(πi)]. (103)

4.4. Crossings and Anticrossings of Energies and Widths

The curves representing Re [Ĉn(πi)] and Re [Ĉn+1(πi)] cross in the plane
(Re εn,n+1, ξ1), see Fig. 3, at a point ξ̄c = (ξ1c, ξ̄

(i)
2 ), where

Re [Ĉn(πi)]|�ξ=�ξc
= Re [Ĉn+1(πi)]|�ξ=�ξc

. (104)

From Eqs. (100), (77) and (78), this condition means that the crossing occurs
only if

[
+
√

( �R · �ξc)2 + ( �I · �ξc)2 + �R · �ξc

]|
ξ2=ξ̄

(i)
2

= 0, (105)

but this condition is satisfied only for points �ξc on the branch cut line LR .
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Therefore, the crossing point of the curves representing Re [Ĉn(πi)] and
Re [Ĉn+1(πi)] is the intersection of the hyperplane ξ2 = ξ̄

(i)
2 and the branch cut

line LR .
From Eqs. (103), (77) and (78), a similar argument shows that the curves

Im [Ĉn(πi)] and Im [Ĉn+1(πi)] cross in the plane (Im εn,n+1, ξ1), at a point �ξ ′
c =

(ξ ′
1c, ξ̄

(i)
2 ) where,

Im [Ĉn(πi)]| �ξ ′= �ξ ′
c
= Im [Ĉn+1(πi)]| �ξ ′= �ξ ′

c
, (106)

but, from (77) and (78), this condition means that

[
+
√

( �R · �ξ ′
c)2 + ( �I · �ξ ′

c)2 − �R · �ξ ′
c

]|
ξ ′

2=ξ̄
(i)
2

= 0, (107)

but this is the condition that defines the branch cut LI .
Hence, the curves representing Im [Ĉn(πj )] and Im [Ĉn+1(πj )] cross in the

plane (Im εn,n+1, ξ1) at a point (Im εn,n+1 = 0, ξ1 = ξ ′
1c) only when the hyperplane

ξ2 = ξ̄
(i)
2 intersects the branch cut line LI at the point ξ̄ ′

c = (ξ ′
1c, ξ̄

(j )
2 ), see Fig. 1.

The branch cut lines, LR and LI , have one point in common, namely, the
exceptional point. Hence, when the path π2 crosses the line L′ exactly at the
exceptional point where LR and LI meet, both the real and imaginary parts of
the trajectories (sections) Ĉn(π2) and Ĉn+1(π2) cross, and the two complex energy
eigenvalues are equal, that is, at the point of exact degeneracy of resonances, see
Fig. 2.

The interpretation of the trajectories Ĉn(π ) and Ĉn+1(π ) as sections of
the energy sheets representing the complex energy eigenvalues Ên(ξ1, ξ2) and
Ên+1(ξ1, ξ2), leads in a natural way to the interpretation of the crossing and
anticrossing properties of the projections Re Ên(ξ1, ξ2), Re Ên+1(ξ1, ξ2) and
Im Ên(ξ1, ξ2), Im Ên+1(ξ1, ξ2) in terms of the topological properties of the en-
ergy hypersurfaces close to the degeneracy point. Now, it will be convenient to
rephrase this interpretation in more physical terms.

In standard notation, Re En(ξ1, ξ2) is the resonance energy En and–
Im En(ξ1, ξ2) is the resonance half-width 1/2(�n), that is

En(ξ1, ξ2) = En − i
1

2
�n (108)

and a similar expression for En+1(ξ1, ξ2).
When the physical system is perturbed by allowing one of the external pa-

rameters to vary, say ξ1, while the other parameter is kept constant, the energies
and widths of the resonances change and the two unbound states in the isolated
doublet of resonances get mixed.

In order to describe the mixing of the two unbound states, it is useful to
consider the differences of the energies �E, and the differences of the widths ��

of the two perturbed states.
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From Eqs. (77)–(81), and keeping ξ2 = ξ̄
(i)
2 , we obtain

�E = En − En+1 = (Re Ên − Re Ên+1)
∣∣
ξ2=ξ̄

(i)
2

= σ
(n)
R

√
2

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 + ( �R · �ξ )
]1/2

]
ξ2=ξ̄

(i)
2

(109)

and

�� = 1

2
(�n − �n+1) = Im (En+1) − (Im En)

= −σ
(n)
I

√
2

2

[
+
√

( �R · �ξ )2 + ( �I · �ξ )2 − ( �R · �ξ )
]1/2|

ξ2=ξ̄
(i)
2

. (110)

These expressions allow us to relate the terms ( �R · �ξ ) and ( �I · �ξ ) directly with
observables of the isolated doublet of resonances.

Taking the product of �E��, and recalling Eq. (57), we get

�E�� = −1

2
( �I · �ξ )|

ξ2=ξ̄
(i)
2

(111)

and taking the differences of the squares of the left hand sides of (109) and (110),
we get

(�E)2 − (��)2 = ( �R · �ξ )|
ξ2=ξ̄

(i)
2

. (112)

At a crossing of energies �E vanishes and at a crossing of widths ��

vanishes. Hence, the relation found in Eq. (111) means that a crossing of energies
or widths can occur if and only if ( �I · �ξ )

ξ̄
(i)
2

vanishes.

For a vanishing ( �I · �ξc)
ξ̄

(i)
2

= 0 = �E��, we find three cases, which are

distinguished by the sign of ( �R · �ξc)
ξ̄

(i)
2

. From Eqs. (109) and (110),

1. ( �R · �ξc)
ξ̄

(i)
2

> 0 implies �E �= 0 and �� = 0, i.e. energy anticrossing and
width crossing.

2. ( �R · �ξc)
ξ̄

(i)
2

= 0 implies �E = 0 and �� = 0, that is, joint energy and
width crossing, which is also degeneracy of the two complex resonance
energy eigenvalues.

3. ( �R · �ξc)
ξ̄

(i)
2

< 0 implies �E = 0 and �� �= 0, i.e. energy crossing and
width anticrossing.

This rich physical scenario of crossings and anticrossings for the energies
and widths of the complex resonance energy eigenvalues, extends a theorem of
von Neumann and Wigner (1929) for bound states to the case of unbound states.

In the case of two bound states, the energy eigenvalues, E1 and E2, are
real. When the perturbation depends on one external parameter, the difference
�E = E1 − E2, cannot vanish. That is, the energies of two bound states repel
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(anticross) for any non-vanishing value of a perturbation depending on only one
parameter (von Neumann and Wigner, 1929; Berry, 1985).

The general character of the crossing-anticrossing relations of the energies
and widths of a mixing isolated doublet of resonances, discussed above, has been
experimentally established by P. von Brentano and his collaborators in a series of
beautiful experiments (von Brentano and Philipp, 1999; Philipp et al., 2000; von
Brentano, 2002).

5. TRAJECTORIES OF THE S-MATRIX POLES AND CHANGES
OF IDENTITY

The trajectories of the S-matrix poles (complex resonances energy eigenval-
ues), Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2), in the complex energy plane are the projections
of the three-dimensional trajectories (sections) Ĉn(πi) and Ĉn+1(πi) on the plane
(Re ε, Im ε), see Figs. 1, 2, and 3.

An equation for the trajectories of the S-matrix poles in the complex energy
plane is obtained by eliminating ξ1 between Re Ên(ξ1, ξ̄

(i)
2 ) and Im Ên(ξ1, ξ̄

(i)
2 ),

Eqs. (97) and (102).
A straightforward calculation gives

Re (Ên)2 − 2 cot φ1(Re Ên)(Im Ên) − (Im Ên)2 − 1

4

( �R · ξ̄ (i)
c

) = 0, (113)

where

cot φ1 = R1

I1
(114)

and the constant vector �ξ (i)
c is such that,

( �I · �ξc)|
ξ2=ξ̄

(i)
2

= 0, (115)

which is the previously found condition for the occurrence of a crossing of �E or
��.

The discriminant of Eq. (113), 4(cot2 φ1 + 1), is positive. Therefore, close
to the crossing point, the trajectories of the S-matrix poles are the branches of a
hyperbola defined by Eq. (113).

The asymptotes of the hyperbola are the two straight lines defined by

Im E (I ) = tan
φ1

2
Re E (I ) (116)

and

Im E (II ) = − cot
φ1

2
Re E (II ). (117)
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The two asymptotes divide the complex energy plane in four quadrants. The
two branches of the hyperbola are in opposite, that is, not adjacent, quadrants of
the complex energy plane.

We verify that, if En satisfies Eq. (113), so does −En = En+1. Therefore, if the
trajectory followed by the pole En is one branch of the hyperbola, the trajectory
followed by the pole En+1 is the other branch of the hyperbola. Initially, the poles
move towards each other from opposite ends of the two branches of the hyperbola
until they come close to the crossing point, then they move away from each other,
each pole on its own branch of the hyperbola.

We find three types of trajectories, which are distinguished by the sign of
( �R · �ξc)|

ξ2=ξ̄
(i)
2

.

1. Trajectories of type I, when ( �R · �ξc)|
ξ2=ξ̄

(i)
2

< 0.
In this case there is a crossing of energies and an anticrossing of

widths. Hence, one branch of the hyperbola, say, the trajectory followed
by the pole En, lies above a horizontal straight line, parallel to the real axis,
and going through the crossing pointEd . The other branch of the hyperbola,
the trajectory followed by the pole En+1, lies below the horizontal line,
parallel to the real axis, going through the crossing point Ed , see Fig. 4.

2. Critical trajectories (type II), when ( �R · �ξc)|
ξ2=ξ̄

(i)
2

= 0.
There is a joint crossing of energies and widths. The trajectories are

the asymptotes of the hyperbola.
The two poles, En and En+1, start from opposite ends of the same

straight line, and move towards each other until they meet at the crossing
point, where they coalesce to form a double pole of the S-matrix. From
here, they separate moving away from each other on a straight line at 90◦

with respect to the first asymptote, see Fig. 5.
3. Trajectories of type III, when ( �R · �ξc)|

ξ2=ξ̄
(i)
2

> 0.
In this case, there is an anticrossing of energies and a crossing of

widths. Therefore, one branch of the hyperbola, say, the trajectory fol-
lowed by the pole En, lies to the left of a vertical straight line, parallel
to the imaginary axis and going through the crossing point Ed . The other
branch of the hyperbola, the trajectory followed by the pole En+1, lies to
the right of the line parallel to the imaginary axis that goes through the
crossing point Ed , see Fig. 6.

It is interesting to notice that, a small change in the external control parameter
ξ̄

(i)
2 produces a small change in the initial position of the poles, En and En+1, but

when the small change in ξ̄
(i)
2 changes the sign of ( �R · �ξc)|

ξ2=ξ̄
(i)
2

, the trajectories
change suddenly from type I to type III, this very large and sudden change of the
trajectories exchanges almost exactly the final positions of the poles En and En+1.
This dramatic change has been termed a “change of identity” by Vanroose et al.
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Fig. 4. Trajectories of the S(E)−matrix poles of an isolated doublet of
resonances in a double barrier potential. The trajectories are traced by the
poles En(d, V̄

(1)
3 ) and En+1(d, V̄

(1)
3 ) on the complex energy plane when

the point (d, V̄
(1)
3 ) moves on the straight line path π1 that crosses the

line L′
R at (d(1), V̄

(1)
3 ). There is crossing of energies (�E = 0) and an

anticrossing of widths (�� �= 0). The full lines are the exact trajectories
obtained from a numerical computation of the energy pole position func-
tion (Hernández et al., 2003a, 2007). The dashed lines are obtained from
the contact approximants Ên(d, V3) and Ên+1(d, V3) described in the text.

(1997) who discussed an example of this phenomenon in the S-matrix poles in a
two-channel model, W. Vanroose (2001) and Hernández et al. (2003a) have also
discussed these properties in the case of the scattering of a beam of particles by a
double barrier potential with two regions of trapping.

6. SUMMARY AND CONCLUSIONS

We have investigated the degeneracy of an isolated doublet of resonance
energy eigenvalues of a quantum system as functions of the control parameters of
the system. The aim was to give a theoretical explanation of the experimentally
well established rich physical scenario of crossings and anticrossings of energies
and widths of the mixing resonances in the isolated doublet. We were also able to
explain the large and sudden change in the shape of the trajectories of the S-matrix
poles in the complex energy plane observed when the control parameters suffer a
very small change in the vicinity of the exceptional point.

We proceeded in four steps:
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Fig. 5. Trajectories of the S(E)-matrix poles of an isolated doublet of
unbound states in a double barrier potential. The trajectories are traced by
the poles En(d, V ∗) and En+1(d, V ∗) on the complex energy plane when
the point (d, V ∗) moves on the straight line path π2 that goes through the
exceptional point (d∗, V ∗

3 ). There is a joint crossing of energies (�E = 0)
and widths (�� = 0) at exact degeneracy where the two simple poles
meet and coalesce to form one double pole of S(E). The full lines are the
exact trajectories obtained from a numerical computation of the energy-
pole position function (Hernández et al., 2003a, 2007). The dashed lines
were obtained from the contact approximants Ên(d, V3) and Ên+1(d, V3)
described in the text.

1. The degeneracy of the resonance energy eigenvalues was implicitly de-
fined by the vanishing of the Jost function and its first derivative with
respect to the wave number k. By formally solving these equations, we
introduced an explicit expression for the double valued energy-pole posi-
tion function En,n+1(ξ1, ξ2) of the isolated doublet of resonances. The
function En,n+1(ξ1, ξ2) determines the position of the S-matrix poles
of the doublet in the complex energy plane, for each set of values of
the control parameters (ξ1, ξ2). Then we showed that the semi-sum and
the square of the semi-difference of the resonance energy eigenvalues,
1/2 (En(ξ1, ξ2) + En+1(ξ1, ξ2)) and 1/4 (En(ξ1, ξ2) − En+1(ξ1, ξ2))2, that
appear in En,n+1(ξ1, ξ2) are regular functions of the control parameters
at the exceptional point where the degeneracy occurs.

2. From these results, we obtained a contact equivalent approximant
Ên,n+1(ξ1, ξ2) to the pole position function En,n+1(ξ1, ξ2) which gave us
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Fig. 6. Trajectories of the S(E)-matrix poles of an isolated doublet of
resonances in a double barrier potential. The trajectories are traced by the
poles En(d, V̄

(3)
3 ) and En+1(d, V̄

3)
3 ) on the complex energy plane when

the point (d, V̄
(3)
3 ) moves on the straight line π3 that crosses the line L′

I

at (d(3), V̄
(3)
3 ) in parameter space. There is an anticrossing of energies

(�E �= 0) and a crossing of widths (�� = 0). The full lines are the ex-
act trajectories obtained from a numerical computation of the energy-pole
position function (Hernández et al., 2003a, 2007). The dashed lines are
obtained from the contact approximants Ên(d, V3) and Ên+1(d, V3) de-
scribed in the text. When comparing this figure with Fig. 4, notice the
“change of identity” brought about by a small change in (d3, V3).

a simple and explicit but very accurate representation of the analytical
behavior of the pole position function En,n+1(ξ1, ξ2) as function of the
control parameters in the vicinity of the crossing point. We found that,
close to the exceptional point:

the real part of the energy-pole position function Re En,n+1(ξ1, ξ2), as
function of the real parameters (ξ1, ξ2), has an algebraic branch point of
square root type (rank one) at the exceptional point in parameter space, and
a branch cut along a lineLR , that starts at the exceptional point and extends
in the positive direction defined by a vector �ξc satisfying ( �I · �ξc) = 0.

The imaginary part of the energy pole position function
Im En,n+1(ξ1, ξ2), as a function of the real control parameters (ξ1, ξ2),
also has an algebraic branch point of square root type (rank one) at
the exceptional point, and also has a branch cut along a line LI , that
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extends in the negative direction defined by a unit vector �ξc satisfying
( �I · �ξc) = 0.

3. The contact equivalent approximant Ên,n+1(ξ1, ξ2) to the pole position
function allowed us to obtain contact equivalent approximants to the
resonance energy eigenvalues, Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2), which are ze-
roes (roots) of a universal unfolding f̂doub(−k; ξ1, ξ2) of the Jost func-
tion f (−k; ξ1, ξ2) at the exceptional point. Therefore we are justified in
saying that the family of functions Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2) is a uni-
versal unfolding or deformation of any degeneracy or crossing point of
two unbound state energy eigenvalues. The family of functions Ên(ξ1, ξ2)
and Ên+1(ξ1, ξ2), is contact equivalent to the exact energy eigenvalues,
En(ξ1, ξ2) and En+1(ξ1, ξ2), of the isolated doublet of resonances at the
exceptional point, and includes all small perturbations of the degeneracy
conditions up to contact equivalence

4. The experimentally determined dependence of the difference of
resonance energies, �E = (Re En − Re En+1), and widths, �� =
(Im En+1 − Im En), on one control parameter, ξ1, when the other is kept
constant, ξ2 = ξ̄

(i)
2 , may be translated into a geometric language as pro-

jections of intersections of the energy hypersurface representing the dif-
ference of resonant energy eigenvalues and a hyperplane ξ2 = ξ̄

(i)
2 , in a

Euclidean space E4 with Cartesian coordinates (Re E, Im E, ξ1, ξ2).
The explicit expressions found for the contact equivalent approx-

imants Ên(ξ1, ξ2) and Ên+1(ξ1, ξ2) allowed us to compute the intersec-
tions of the hypersurface representing the difference of resonant energy
eigenvalues and the hyperplanes, we also compute the projections of the
intersections. We found that our geometrically computed and the experi-
mentally determined properties of the differences of resonance energies,
�E, and widths ��, are in excellent agreement.

In conclusion, the rich phenomenology of crossings and anticrossings of
the energies and widths of the resonances of an isolated doublet of unbound
states of a quantum system, observed when one control parameter is varied and
the other is kept constant, is fully explained in terms of the topology of the
energy hypersurface representing the complex resonance energy eigenvalues as
functions of the control parameters of the system in the vicinity of the crossing
point.
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